شیمی

شیمی و تمامی موارد مربوط به آن

شیمی

شیمی و تمامی موارد مربوط به آن

آونگ بالستیک

آونگ بالستیک مثالی است که معمولا در تشریع مسایل مربوط به نظریه برخورد مورد استفاده قرار می‌گیرد. می‌دانیم که برخورد در حالت کلی می‌تواند به سه صورت برخورد کشسان یا الاستیک ، برخورد ناکشسان و برخورد کاملا ناکشسان اتفاق بیفتد. در حالت اول قانون بقای انرژی جنبشی برقرار است. بنابراین می‌توان از قوانین بقای اندازه حرکت خطی و انرژی جنبشی بهره برد. در صورتی که در برخورد غیر کشسان فقط قانون بقای اندازه حرکت خطی برقرار است. اما در برخورد غیر کشسان کامل که در مسئله آونگ بالستیک نیز این نوع برخورد صورت می‌گیرد، ذرات برخورد به یکدیگر می‌چسبند و با هم حرکت می‌کنند.

ساختمان آونگ بالستیک

آونگ بالستیک از یک قطعه چوب بزرگ به شکل مکعب مستطیل تشکیل شده است. این قطعه بوسیله دو تکه ریسمان که به دو سر قطعه چوب متصل شده است، از نقطه‌ای آویزان شده است. گلوله‌ای به طرف این مکعب چوبی تشکیل می‌شود. بعد ازشلیک گلوله در داخل قطعه چوب فرو رفته و در اثر نیرویی که به آن وارد می‌کند، موجب نوسان آن می‌گردد.

تشریح حرکت آونگ بالستیک

قطعه چوب به جرم M ابتدا در حالت قائم قرار دارد. حال گلوله‌ای به جرم m و با سرعت افقی Vi به طرف قطعه چوب شلیک می‌شود. اگر زمان برخورد (زمان لازم برای ساکن شدن گلوله نسبت به قطعه چوب) در مقایسه با زمان نوسان آونگ خیلی کوچک باشد، ریسمان‌های نگه دارنده در حین برخورد قائم می‌مانند. بنابراین ، هیچ نیروی افقی خارجی در حین برخورد، به دستگاه وارد نمی‌شود، و مولفه‌های افقی اندازه حرکت خطی پایسته می‌مانند. سرعت بعد از برخورد سیستم (گلوله + آونگ) خیلی کمتر از سرعت گلوله بعد از برخورد است. این سرعت نهایی که با Vf نشان می‌دهیم به راحتی با استفاده از قانون بقای اندازه حرکت خطی قابل محاسبه است.
Mvi=(m+M) Vf

بعد از برخورد، آونگ و گلوله به ارتفاع بیشینه Yمی‌رسند و در آنجا انرژی جنبشی بعد از برخورد به انرژی پتانسیل گرانشی تبدیل می‌شود. بنابراین قانون بقای انرژی مکانیکی برقرار است، لذا می‌توان با اندازه گیری ارتفاع و مخلوط کردن دو رابطه حاصل از قانون بقای اندازه حرکت خطی و قانون بقای انرژی مکانیکی ، سرعت اولیه گلوله را بدست آورد. اصول آونگ بالستیک برای اندازه گیری سرعت گلوله بکار می‌رود.Vi= (m+M)/m √2gy در این رابطه g شتاب جاذبه زمین است.

طول موج

بیشتر ما موجهای روی دریا را دیده‌ایم. این موجها بیش از آنکه به ساحل برسند، آب دریا را موج دار می‌کنند. به بالاترین نقطه‌های این موجها قله‌ی موج و به پایین‌ترین نقطه‌های آنها دره‌ی موج می‌گویند. فاصله بین یک قله موج تا قله‌ی دیگر را طول موج می‌نامند.



 

موجهای صدا

همه شکلهای انرژی متحرک ، از جمله صدا ، نور و گرما بصورت موج حرکت می‌کنند. همه‌ی آنها ، درست مانند موجهای دریا ، طول موجی دارند. برای مثال ، وقتی موجهای صدا در هوا حرکت می‌کنند، در فشار هوا تغییر اندکی بوجود می‌آورند. قله‌های موجهای صدا در نقطه هایی واقع می شوند که فشار هوا به بیشترین حد خود می‌رسد. گوشهای ما ، تغییر فشار هوا را دریافت می‌کنند و پیامی به مغز می‌فرستند.

طول موجهای متفاوت

طول موج نیز مانند بسامد (میزان بالا و پایین رفتن موج) ، روی ویژگیهایی موج تأثیر می‌گذارد؛ زیرا این دو باهم ارتباط نزدیک دارند. برای مثال ، موجهای صدای کم بسامد نسبت به موجهای صدای پر بسامد ، طول موج بزرگتری دارند. همچنین طول موج نور سرخ از طول موج نور آبی بزرگتر است. نور بخشی از گستره‌ی موجهای انرژی است که شامل موجهای رادیویی ، ریزموجها (مایکروویوها) ، پرتوهای فرو سرخ ، پرتوهای فرابنفش ، پرتوهای ایکس و پرتوهای گاما می‌شود که همه‌ی آنها با سرعت 300 هزار کیلومتر بر ثانیه حرکت می‌کنند. همه اینها باهم طیف الکترومغناطیس را تشکیل می‌دهند.

طول موج و بسامد

اگر سرعت موج (بر حسب متر بر ثانیه) را بر بسامد آن (بر حسب هرتز) تقسیم کنید، طول موج آن بر حسب متر بدست می‌آید. برای مثال که به سرعت 344 متر بر ثانیه حرکت می‌کند و بسامد آن 688 هرتز است، طول موجی برابر 5/0 متر دارد.

طیف الکترومغناطیسی

طیف الکترومغناطیسی شامل گستره‌ی بسیار وسیعی از موجهای انرژی است که همه مانند هم حرکت می‌کنند. امواج الکترومغناطیسی طیف بسیار وسیعی از طول موجهای بسیار کوچک تا بسیار بزرگ را در بر‌ می‌گیرند. این امواج را با توجه به اندازه طول موج به هفت دسته‌ مختلف تقسیم‌بندی می‌کنند که شامل امواج گاما با طول موجهایی کوچکتر از ۱۰۹ سانتیمتر تا امواج رادیویی با طول موج بزرگتر از ۱۰ سانتیمتر را شامل می‌شوند. همانطور که در شکل بالا ملاحظه می‌شود محدوده امواج نوری که قابل دیدن توسط چشم انسان می‌باشند، محدوده بسیار کوچکی از این طیف گسترده است. با حرکت از سمت امواج رادیویی به سمت امواج گاما ، همزمان با کاهش طول موج ، فرکانس آن و در نتیجه انرژی موج افزایش می‌یابد. چون بخشهای گوناگون طیف ، طول موجهای متفاوتی دارند، ویژگیهای آنها نیز متفاوت است. برای مثال موجهای نوری را می‌توانیم ببینیم، و پرتو ایکس بخشی از طیف است که از اجسام جامد ، مانند پوست‌ها ، عبور می‌کنند.
 

کاربرد امواج ، طول موجهای متفاوت

موجهای رادیویی در فرستنده‌های رادیویی کار می‌کنند. موجهای رادیویی با بسامد بسیار زیاد (UAF) مربوط به موجهای تلویزیون هستند. ریزموجهای بلندتر در رادار به کار می‌روند. ریزموجهای کوتاه در اجاق مایکروویو به کار می‌روند. پرتوهای فروسرخ در دوربینهای حساس به گرما به کار می‌روند. نور مرئی از سرخ تا بنفش برای رؤیت به رنگهای مختلف و پرتوهای فرابنفش در تختهای مخصوص حمام آفتاب به کار می‌روند. پرتوهای ایکس برای نگاه کردن به درون اجسام بکار می‌روند و از پرتوهای گاما برای آشکارسازی ترک در فلز به کار می‌رود. پلیس‌ها اغلب برای تشخیص سرعت خودروها از رادار استفاده می‌کنند. موجهای رادار که از تفنگی شلیک می‌شوند، به وسیله‌ی نقلیه‌ای که در حال حرکت است می‌خورند و بر می‌گردند. بسامد موج برگشتی سرعت وسیله‌ی نقلیه را مشخص می‌کند.

پدیده تولید زوج

در تعبیر رابطه معروف اینشتین (E = mc2) اصل هم ارزی جرم و انرژی بیان می‌‌شود. به عبارت دیگر ، دو کمیت جرم و انرژی به یکدیگر قابل تبدیل هستند. هرگاه تغییری در جرم حاصل شود، به وسیله تغییر دیگری در انرژی جبران می‌‌شود. برای بررسی امکان تبدیل انرژی به جرم می‌‌توان به پدیده تولید زوج اشاره کرد. به عبارت دیگر ، پدیده تولید زوج می‌‌تواند به این پرسشها پاسخ دهد که


  • آیا می‌‌توان از انرژی خالص ماده آفرید؟

  • یا اینکه آیا می‌‌توان انرژی سکون را به انرژی الکترومغناطیسی تبدیل کرد؟

    البته لازم به ذکر است که در چنین تبدیلاتی باید قوانین بقای انرژی ، اندازه حرکت و بار الکتریکی نقض نشود.

شرایط اولیه تولید زوج

در بین تمام ذرات شناخته شده ، الکترون دارای کوچکترین جرم سکون غیرصفر است و لذا کمترین انرژی برای تولید آن مورد نیاز است. اما می‌‌دانیم که فوتون ذره‌ای بدون بار است، در حالی که الکترون ذره‌ای باردار است. بنابراین برای اینکه قانون بقای بار الکتریکی نقض نشود، علاوه بر الکترون باید ذره باردار دیگری که بار الکتریکی آن به اندازه بار الکتریکی الکترون با علامت مخالف است، ایجاد شود. این ذره را پوزیترون می‌‌گویند که به آن پادذره الکترون نیز گفته می‌‌شود.

الکترون و پوزیترون به جز از نظر علامت بارها ، از هر نظر دیگری به هم شبیه هستند. بنابراین اگر جرم سکون الکترون و پوزیترون را m_0 بگیریم، کمترین مقدار انرژی فوتون آفرینش یک زوج الکترون و پوزیترون ، با لحاظ کردن قانون بقای انرژی برابر 2m0C2 خواهد بود و چون انرژی سکون الکترون یا پوزیترون با لحاظ کردن مقادیر جرم الکترون و سرعت نور برابر 0،51 میلیون الکترون ولت است، لذا کمترین مقدار انرژی فوتون یا به اصطلاح انرژی آستانه برای تولید باید برابر 1،02 میلیون الکترون ولت باشد. بر این اساس زوجهای الکترون فقط به وسیله فوتونهای اشعه گاما یا فوتونهای اشعه ایکس که طول موج خیلی کوتاهی دارند، قابل تولید است.

تولید زوج با انرژیهای بیشتر از انرژی آستانه

اگر انرژی یک فوتون بیشتر از انرژی آستانه برای تولید زوج الکترون و حفره باشد، مازاد انرژی (یعنی تفاضل انرژی فوتون و انرژی آستانه) به صورت انرژی جنبشی زوج آفریده شده ، ظاهر می‌‌شود. این انرژی مجموع انرژی جنبشی الکترون و پوزیترون است.

امکان تولید زوج در فضای تهی

می‌‌توان ثابت کرد که در تولید ذره و پادذره انرژی و اندازه حرکت بطور همزمان نمی‌‌توانند پایسته بمانند، مگر اینکه فوتون در نزدیکی ذره سنگینی ، همچون هسته یک اتم باشند. به بیان دیگر ، پدیده تولید زوج در فضای تهی غیرممکن است. به عنوان مثال ، فرض می‌‌کنیم که در یک فضای تهی ، فوتون ناپدید شده و یک زوج الکترون و حفره آفریده شود.

همچنین فرض کنید که ناظر نسبت به مرکز جرم الکترون و پوزیترون ساکن است. در این صورت اندازه حرکت کل الکترون و پوزیترون نسبت به این ناظر صفر خواهد بود. اما فوتونی که زوج را تولید می‌‌کند، در این چارچوب مرجع دارای اندازه حرکت غیر صفر خواهد بود، چون فوتون در هر چارچوب مرجعی همواره با سرعت C حرکت می‌‌کند. بنابراین باید قبل از برخورد اندازه حرکت فوتون را داشته باشیم، نه اندازه حرکت خالص بعد از برخورد را. بطور خلاصه ، یک فوتون نمی‌‌تواند خودبه‌خود در فضای تهی به یک زوج الکترون _ پوزیترون واپاشیده شود.

آشکارسازی زوج الکترون و پوزیترون

به دلیل اثرهای یونشی که ذرات باردار هنگام حرکت خود در گاز تولید می‌‌کنند، مسیر حرکت آنها قابل روئیت است. حال اگر در این محیط یک میدان مغناطیسی اعمال شود، در این صورت پوزیترون و الکترون به دلیل داشتن بارهای الکتریکی مخالف در قوسهای دایره‌ای با جهتهای مخالف منحرف می‌‌شوند. بنابراین مسیر الکترون و پوزیترون قابل مشاهده خواهد بود.

کشف پوزیترون

وجود پوزیترونها در سال 1307 – 1928 توسط دیراک بطور نظری پیشگویی شد. چهار سال بعد اندرسون (C.D. Anderson) در جریان مطالعاتش روی تابش کیهانی ، پوزیترون را مشاهده و مشخص کرد. کمی ‌بعد از آن بوسیله شتابدهنده‌های ذره که با چند میلیون الکترون ولت کار می‌‌کردند، زوجهای الکترون و پوزیترون در آزمایشگاه تولید شدند. امروزه مشاهده زوجهای الکترون و پوزیترون در برهمکنش فوتونهای با انرژی بالا و ماده یک پدیده عادی به شمار می‌‌روند. در سالهای 1334 – 1955 برای نخستین بار زوجهای پروتون _ پادپروتون و نوترون _ پادنوترون در آزمایشگاه آفریده شدند.

پدیده نابودی زوج

یکی از نتایج اصل هم ارزی جرم و انرژی این است که این دو می‌‌توانند به یکدیگر تبدیل شوند. مشاهده تجربی این مسئله در فرایندهای مختلف مانند اثر فوتوالکتریک ، اثر کامپتون ، پدیده تولید زوج و … انجام شده است. در پدیده تولید زوج تابش الکترومغناطیسی در مجاورت یک هسته سنگین به دو ذره الکترون و پوزیترون واپاشیده می‌‌شود، اما پوزیترون نمی‌‌تواند طول عمر زیادی داشته باشد، چون فضا پر از الکترون است، لذا پوزیترون بعد از مدت کوتاهی از تولید شدن با یک الکترون ترکیب شده و از بین می‌‌رود و به جای آن فوتون یا تابش الکترومغناطیسی ایجاد می‌‌شود که به این پدیده نابودی زوج می‌گویند.

شرایط اولیه نابودی زوج

نابودی زوجهای ذره و پادذره و همراه با آن آفرینش فوتونها ، عمل عکس تولید زوج است. نابودی ماده و آفرینش انرژی الکترومغناطیسی را برای حالتی در نظر می‌‌گیریم که الکترون و پوزیترون نزدیک به هم و اساسا ساکن باشند. در آغاز اندازه حرکت خطی کل این دو ذره صفر است، بنابراین وقتی این دو ذره به هم می‌‌پیوندند و نابود می‌‌شوند، یک تک فوتون نمی‌‌تواند آفریده شود، زیرا این عمل باعث نقض قانون بقای اندازه حرکت خطی می‌‌شود، ولی اگر دو فوتون آفریده شوند که با اندازه حرکتهای مساوی و در جهتهای مخالف حرکت کنند، اندازه حرکت خطی می‌‌تواند پایسته بماند.

چنین زوج فوتونهایی دارای فرکانسها و انرژیهای یکسان هستند. در واقع می‌‌توان گفت که سه یا چند فوتون می‌‌توانند آفریده شوند، ولی با احتمال به مراتب کمتر از آفرینش دو فوتون. همین طور ، وقتی چندین زوج الکترون و پوزیترون در نزدیکی یک هسته سنگین نابود می‌‌شوند، تعداد کمی ‌از این نابودیها یک تک فوتون تولید خواهند کرد.

سرنوشت نهایی پوزیترون

سرنوشت نهایی پوزیترونها بعد از تولید در پدیده تولید زوج ، نابودی است. وقتی که یک پوزیترون با انرژی بالا ظاهر می‌‌شود، هنگام عبور از ماده ، در اثر برخوردها ، انرژی جنبشی خود را از دست می‌‌دهد و سرانجام با سرعت پایین حرکت می‌‌کند. آنگاه این پوزیترون با یک الکترون ترکیب می‌‌شود و تشکیل یک دستگاه مقید به نام پوزیترونیوم می‌‌دهد که خیلی سریع (در مدت 10^-10 ثانیه) به دو فوتون با انرژی مساوی واپاشیده می‌‌شود.

از این رو ، مرگ یک پوزیترون با ظهور دو کوانتوم نابودی یا دو فوتون ، که انرژی هریک 0،51 میلیون الکترون ولت است، خبر داده می‌‌شود. قابلیت فنا شدن پوزیترونها به دلیل ناپایداری ذاتی نیست، بلکه به خاطر احتمال زیاد برخورد آنها و نابودیهای بعدی با الکترونهاست.

جهان فرضی

در جهانی که ما در آن زندگی می‌‌کنیم، کثرت تعداد الکترون ، پروتون و نوترون (در حالت کلی ذره) برقرار است، بنابراین زمانی که پادذره‌های این ذرات خلق می‌‌شوند، بلافاصله طی فرایندهایی نابود می‌‌شوند، اما می‌‌توان فرض کرد که بخشی از جهان وجود دارد که در آن تعداد پوزیترون ، پادپروتون ، پادنوترون (در حالت کلی پادذره) زیاد است. هرچند این امر در حال حاضر فقط در حد یک حدس و گمان است.

ذره و ضد ذره

وجود زوج‌های ذرات و ضد ذرات ریشه در جهان دارد. از بدو خلقت تا کنون موجودی مجرد آفریده نشده‌ است. برای همین برطبق اصل آفرینش که در آیات زیادی از قرآن کریم به آن پرداخته شده‌است، زوجیت در جهان و طبیعت برای هر موجودی وجود دارد. بنابراین ، در دنیای میکروسکوپیک این زوجیت بین ذرات ، بخصوص ذرات بنیادی مطرح می‌شود. یعنی هر ذره برای خودش یک ضد ذره‌ای دارد که کاملا شبیه آن هست. اما در پاره‌ای خصوصیات متفاوت هستند که این اختلافات از طریق نظریات بنیادین نسبیت ، مکانیک کوانتومی ، قوانین بنیادین فیزیک توصیف می‌شوند.

خصوصیات ضد ذرات

به توسط اصول نسبیت و مکانیک کوانتومی وجود ضد ذره‌ای برای هر ذره که دارای همان جرم و اسپین باشد ، نتیجه می‌شود. سایر اعداد کوانتومی ،بارالکتریکی ، ایزو اسپین ، شگفتی ، عدد بار یونی ، عدد لپتونی دارای همان اندازه‌ای هستند که ذرات معمولی دارند ولی با علامت معکوس ، رابطه ذرات و ضد ذرات همواره به قوانین بقای فیزیک منجر می‌شود.

از ضد ذرات تا ضد ماده

نامگذاری الکترونها ، پروتونها و نوترونها تحت عنوان ذره کاملا اختیاری است ، در عین حال طبیعی به نظر می‌آید که خود شما و محیط اطرافتان ترکیبی از ماده تلقی شود تا ضد ماده. برای درک بیشتر ، ماده‌ای که جهان کنونی را تشکیل داده خودش از ذرات شکل گرفته است. بنابراین در مقابل ماده ، ضد ماده‌ای متشکل از ضد ذرات قابل تصور است.

برهمکنش ذرات و ضد ذرات

قوانین بقا در برهمکنش ذرات و ضد ذرات معتبر است. برای مثال ، در برهمکنش پروتون با پروتون قانون بقای بار الکتریکی ، قانون بقای جرم ، قانون بقای بار باریونی ، قانون بقای اندازه ،قانون بقای اندازه حرکت زاویه‌ای ، برآیند اسپین سیستم و ... به قوت خود باقی است. البته وقتی صحبت از ضد ماده می‌شود باید دو فرایند زیر لحاظ شود. پدیده تولید جفت و پدیده نابودی جفت. بدین معنی که ذره و ضد ذره‌اش در برخورد متقابل نابود می‌شوند و انرژی آنها به فوتون یا مزون مبدل می‌شود. در فرایند معکوس فوتون پرانرژی نابود می‌شود و تولید جفت ذره و ضد ذره می‌کند.

چشمه تولید ذرات و ضد ذرات

پاد ذرات در شتاب دهنده های بزرگ ذراتو به طور کلی در هر جا که نشانی از ذرات پرانرژی یافت می‌شود ، بعنوان مثال ، ذرات اشعه کیهانی در جو زمین یا اشعه کیهانی در فضای بین ستاره ها و غیره ، تولید می‌شوند. اما هنوز کسی نمی‌داند که آیا ضد ماده به مقدار زیاد در جهان وجود دارد یا نه؟ البته فوتونی که از ماده منتشر می‌شود دقیقا همان فوتونی است که از ضد ماده منتشر می‌یابد ، از اینرو تنها با مشاهده تابش الکترو مغناطیسی ستاره ای نمی‌توان تعیین کرد که از ماده ساخته شده‌است یا از ضد ماده.

خاصیت شگفت انگیز نوترینو

برای تشخیص ماده از ضد ماده ، شناسایی نوترینو ، موثر است. ستارگان ساخته شده از ماده معمولی باید سرچشمه نوترینوها باشند در حالی کهپ ادستارگان سرچشمه پاد نوترینوها هستند. اما حساسیت آشکار سازهای نوترینویی کنونی از لحاظ اندازه ، چند مرتبه کمتر از حدی است که بتوان مشخص کرد آیا ضد ماده به مقدار آنقدر بزرگ ، در آن حد که برای ساختمان و تکامل جهان دارای اهمیت باشد ، وجود دارد یا نه.

ناگفته‌های ذرات و ضد ذرات

  • این احتمال وجود دارد در فاز اولیه تاریخ جهان ، پاد ذره‌های بسیاری وجود داشته‌اند. اما هنوز معلوم نیست که تعداد ذرات با تعداد پاد ذرات مساوی بوده ، و یا نا متقارنی اندکی به سود ذرات وجود داشته‌است.

  • ضد ماده ، ممکن است نقش مهمی را در جهان ایفا کرده باشد ، زیرا نابودی آن در اثر رویارویی با ماده معمولی ، موثرترین مکانیزم برای استخراج انرژی سکون از اجسام مادی است.

عناصر موجود در بدن انسان

اگه بدن انسان را در نظر بگیریم متوجه می شویم که از عنصر های زیادی درست شده که اگه مقدار هر کدوم رو اندازه بگیریم می تونیم بگیم که با این ها چه چیزهایی می شه درست کرد و میشه یه قیمتی هم برای انسان در نظر گرفت

اکسیژن : ۵/۴۵ کیلوگرم

کربن : ۶/۱۲ کیلوگرم

پتاسیم : ۲۱۴/۰ کیلوگرم

آهن : ۳ گرم

منیزیم : ۳ گرم

هیدروژن :‌ ۷ کیلوگرم

نیتروژن :‌۱/۲ کیلوگرم

کلر : ۱ کیلوگرم

مواد معدنی دیگر : ۲ گرم

که با این ها ما می تونیم این مواد را درست کنیم:

۵ کیلوگرم شمع - ۶۵ جین مداد ذغالی سیاه - ۷ عدد میخ - ۸۲۰۰۰ چوب کبریت - ۲۰ قاشق نمک  - ۸۵۰ عدد حبه قند - ۴۲ لیتر آب

حالا اگه بخواهیم با این مواد بدست آمده یه قیمتی بزنیم می تونیم بگیم : ۱۱ هزار تومان