شیمی

شیمی و تمامی موارد مربوط به آن

شیمی

شیمی و تمامی موارد مربوط به آن

فلزات قلیایی خاکی

 

استخراج

فلزات قلیایی خاکی در پوسته زمین یافت می‌شوند. اما نه بصورت فلز آزاد بلکه بعلت فعالیت بالا بصورت ترکیب در کانی‌ها و سنگهای مختلف. کلسیم ، پنجمین عنصر فراوان در پوسته زمین و منیزیم هشتمین عنصر فراوان در پوسته زمین است. کانی‌های مهم منیزیم عبارتند از: کارنیت ، منیزیت و دولومیت. منیزیم از آب دریا هم استخراج می‌شود. با افزودن هیدروکسید کلسیم به آب دریا هیدروکسید منیزیم کم محلول بصورت رسوب ته‌نشین می‌شود. این رسوب بعد از تبدیل به کلرید منیزیم در سلول الکتروشیمیایی داونز الکترولیز می‌شود تا منیزیم فلزی بدست آید. منابع عمده کلسیم ، کالک ، سنگ آهک ، ژیپس ( سنگ گچ ) بی‌آب است.

خواص فیزیکی

این فلزات سخت‌تر و چگال‌تر از فلزات گروه اول هستند. دمای ذوب بالایی دارند. این خواص آنها تا حد زیادی ناشی از وجود دو الکترون درلایه ظرفیت است که پیوندهای قوی‌تری از فلزات گروه I ایجاد می‌کنند. منیزیم ، کلسیم ، استرانسشیم و باریم از این گروه در اثر حرارت در شعله ایجاد رنگ می‌کنند.


  • منیزیم: سفید درخشان

  • کلسیم: قرمز آجری

  • استرانسیم: قرمز خونی

  • باریم: سبز

شعاع اتمی و یونی بطور یکنواخت از بالا به پایین افزایش می‌یابد. شعاع یونی خیلی کوچکتر از شعاع اتمی است و این بعلت وجود دو الکترون در لایه S است که با از دست دادن آنها و ایجاد کاتیون M+2 بار مؤثر هسته بر الکترون‌های تراز کامل بیشتر شده و این باعث کاهش اندازه یون می‌شود.

 

خواص شیمیایی

از بالا به پایین این فلزات ، الکتروپزیتیوتر می‌شوند. واکنش با اکسیژن و کلر شدید است. تمام فلزات بجز بریلیم در دمای اتاق در معرض هوا اکسید شده و رنگشان تیره می‌شود. بریلیم بعلت واکنش‌پذیری بالا در زیر نفت نگهداری می‌شود. همه فلزات این گروه بجز بریلیم آب و اسیدهای ضعیف را به هیدروژن کاهش می‌دهند.


Mg + H + H2

منیزیم بکندی با آب واکنش می‌دهد مگر اینکه آب داغ باشد. ولی کلسیم بشدت در دمای اتاق با آب واکنش داده و سوسپانسیون ابری سفیدی از هیدروکسید کلسیم تولید می‌کند. کلسیم ، استرانسیم و باریم در اثر حرارت با هیدروژن ترکیب شده و آنرا به فرم هیدرید احیاء می‌کند.


Cas + H2 g

فلزات این گروه در اثر گرم شدن عامل احیاء کننده قوی برای احیاء نیتروژن به فرم نیترید هستند . منیزیم در CO2 سوخته و آنرا به کربن احیاء می‌کند. یعنی آتش منیزیم با CO2 خاموش نمی‌شود.

اکسید

اکسید این فلزات به فرمول عمومی MO بوده و یک اکسید بازی است و از حرارت کربنات یا هیدروکسید این فلزات با آزاد کردن CO2 تولید می‌شود. اکسید این فلزات انرژی شبکه و دمای ذوب بالایی دارند. بجز بریلیم بقیه دارای فرم پراکسید MO2 هم هستند، چون کاتیون Be+2 برای ایجاد پراکسید بسیار کوچک است.

اکسیدهای کلسیم ، استرانسیم ، باریم با آب واکنش داده و هیدرو اکسید تولید می‌کنند. هیدروکسید کلسیم که به آب آهک معروف است، بطور نسبی در آب محلول بوده و یک محلول بازی متوسط می‌دهد که برای شناسایی گاز CO2 بکار می‌رود.

هالید

هالیدهای این گروه از فلزات به فرم هیدراته یافت می‌شوند. بجز کلرید بریلیم ، همگی ترکیب یونی هستند. کلرید کلسیم بی‌آب میل شدیدی به جذب آب دارد و بعنوان خشک کننده استفاده می‌شود.

حالت اکسیداسیون

فلزات قلیایی خاکی در تمام ترکیباتی که تشکیل می‌دهند حالت اکسیداسیون +2 دارند. بجز چند استثنا همه ترکیبات آنها یونی است. این فلزات دو الکترون در لایه آخر دارند که از دست دادن آنها نسبتا آسان است. اما برداشتن الکترون سوم بسیار مشکل است و به انرژی بالایی نیاز دارد، زیرا تحت جاذبه شدید هسته بوده و از لایه هشت تایی کامل برداشته می‌شود. بنابراین کاتیون این فلزات به فرم M+2 است.

اطلاعات صنعتی

از میان فلزات این گروه فقط منیزیم بطور گسترده تولید می‌شود.از این فلز ، بدلیل داشتن شعله سفید و درخشان در ترکیب منومرها ، فشفشه ها و گلوله‌های نورانی ردیاب و بمب‌های آتشزا استفاده می‌شود. منیزیم با آلومینیوم آلیاژی با دانسیته پایین و دوام بالا ایجاد می‌کند که در صنایع هواپیماسازی کاربرد دارد. اکسید منیزیم بدلیل دمای ذوب بالا در بدنه کوره‌ها استفاده می‌شود.

فلزات قلیایی

عناصر گروه اول جدول تناوبی که به فلزات قلیایی معروفند، در لایه ظرفیت الکترونی دارای آرایش ns1 هستند که n ، شماره دوره آنها است. آخرین عنصر به نام فرانسیم ، رادیواکتیو است که در اینجا مورد بحث قرار نمی‌گیرد. این عناصر ، فلزات نقره‌فام رنگی هستند. آنها بسیار نرم بوده و به آسانی با چاقو بریده می‌شوند. سطح درخشان آنها در معرض هوا به علت اکسیداسیون کدر می‌شود.

این عناصر بشدت واکنش‌ پذیر هستند. واکنش ‌پذیری آنها از بالا به پایین گروه یعنی از Li به Cs افزایش می‌یابد و از این لحاظ شبیه عناصر سایر گروهها هستند.

منابع فلزات قلیایی

این فلزات بدلیل واکنش‌پذیری زیاد بطور آزاد در طبیعت یافت نمی‌شوند و معمولا بصورت ترکیب با سایر عناصر هستند. منبع اصلی سدیم ، هالیت یا Nacl است که بصورت محلول در آب دریا یا بصورت رسوب در بستر دریا یافت می‌شود. پتاسیم بصورت فراوان در اکثر معادن بصورتکانی سیلویت (Kcl) یافت می‌شود و همچنین از آب دریا هم استخراج می‌گردد.

فلزات قلیایی بسیار واکنش‌پذیر هستند و آنها را نمی‌توان با جانشین کردن سایر فلزات بصورت آزاد تهیه کرد. فلزات قلیایی بصورت فلز آزاد را می‌توان از الکترولیز نمکهای مذاب آنها تهیه کرد.

خواص فیزیکی

فلزات قلیایی از چند جهت با بقیه فلزات تفاوت دارند. آنها نرم بوده و دارای نقطه ذوب و نقطه جوش پایین هستند. دانسیته پایینی دارند، بطوریکه دانسیته K و Na و Li از دانسیته آب پایین‌تر است. آنتالپی استاندارد ذوب و تبخیر کمتری دارند. به علت داشتن فقط یک الکترون در لایه ظرفیت معمولا پیوندهای فلزی ضعیفی ایجاد می‌کنند. این فلزات وقتی در معرض شعله قرار می‌گیرند، رنگ آن را تغییر می‌دهند. وقتی عنصری در مقابل شعله قرار می‌گیرد، حرارت شعله انرژی کافی برای برانگیختن الکترون لایه ظرفیت را به لایه‌های بالاتر فراهم می‌کند.

الکترون در بازگشت به حالت پایه انرژی منتشر می‌کند و این انرژی دارای طول موج منطقه مرئی است که باعث می‌شود رنگ ایجاد شده در شعله دیده شود. شعاع یونی در فلزات قلیایی خاکی در مقایسه با شعاع اتمی آنها خیلی کوچکتر است. چون اتم یک الکترون در لایه S خود دارد که عدد کوانتومی آن با عدد کوانتومی لایه داخلی متفاوت است. بنابراین این لایه نسبتا دور از هسته است.

وقتی اتم این الکترون را از دست داده و به یون تبدیل می‌شود، الکترونهای باقیمانده در تراز نزدیک نسبت به هسته قرار دارند. بعلاوه افزایش بار مؤثر هسته آنها را بیشتر بطرف هسته جذب می‌کند. بنابراین اندازه یون کاهش می‌یابد.

خواص شیمیایی

فلزات قلیایی عامل کاهنده قوی هستند. پتانسیل الکترود منفی آنها نشانگر میل شدید آنها برای از دست دادن الکترون در تبدیل به کاتیون در محلول است. آنها می‌توانند اکسیژن ، کلر ، آمونیاک و هیدروژن را احیا کنند. در اثر واکنش با اکسیژن هوا اکسید شده و تیره می‌شوند. بنابراین در زیر نفت نگهداری می‌شوند. بعلت واکنش با آب و تولید هیدروژن و هیدروکسید قلیایی نمی‌توان آنها را زیر آب نگهداری کرد.

 

واکنش با آب

از بالا به پایین ، به شدت واکنش با آب افزوده می‌شود. لیتیم به آرامی با آب واکنش داده و حبابهای هیدروژن آزاد می‌کند. سدیم بشدت و همراه با مشتعل شدن با آب واکنش نشان داده و با شعله نارنجی می‌سوزد. پتاسیم در اثر برخورد با آب به شدت مشتعل شده و با شعله بنفش می‌سوزد. سزیم در آب ته‌ نشین شده و به سرعت تولید هیدروژن می‌کند. آزاد کردن هیدروژن همراه با ایجاد امواج ضربه‌ای شدید است که می‌تواند باعث شکستن محفظه شیشه‌ای شود.

Na در آمونیاک حل شده و ایجاد محلول آبی تیره می‌کند که بعنوان عامل کاهنده در واکنشها استفاده می‌شود. در غلظتهای بالا رنگ محلول برنزی شده و جریان الکتریکی را همانند فلز هدایت می‌کند.

چند مورد غیر عادی در شیمی Li دیده می‌شود. کوچک بودن اندازه کاتیون Li در نشان دادن خاصیت کووالانسی در برخی ترکیبات و ایجاد پیوند دیاگونالی با منیزیم از آن جمله است.

اکسیدها

فلزات قلیایی در اثر واکنش با اکسیژن هوا ترکیب جامد یونی به فرمول M2O تولید می‌کنند. هر چند که Na غیر از این ، ترکیب پروکسید ( Na2O2 ) بعنوان فراورده عمده و پتاسیم هم سوپر اکسید ( KO2 ) را بطور عمده تولید می‌کند.

هیدروکسیدها

هیدروکسید فلزات قلیایی ، جامدات یونی به فرم کریستالی در رنگ سفید و فرمول MOH است. قابل حل در آب هستند و همه بجز LiOH آبدار می‌شوند. محلول آبی آنها باز قوی است. اسیدها را خنثی کرده و نمک تولید می‌کنند.

هالیدها

هالیدهای این فلزات ، همه جامد یونی به فرم کریستالی و به رنگ سفید بوده و قابل حل در آب هستند، جز LiF که بعلت داشتن انرژی شبکه بالا که ناشی از جاذبه الکتروستاتیکی بین یون کوچک +Li و -F است.

حالت اکسایش

این فلزات حالت اکسایش 0 و 1+ دارند. تمام ترکیبات شناخته شده آنها بر پایه +M است. اولین انرژی یونش آنها پایین است، زیرا الکترون آخرین لایه به خوبی الکترونهای لایه داخلی توسط جاذبه هسته محافظت نمی‌شود، بنابراین آسان تر برداشته می‌شود. انرژی دومین یونش بالا است، زیرا الکترون بعدی از لایه کامل برداشته می‌شود. همچنین بوسیله هسته ، بخوبی‌ جذب می‌شود.

انرژی یونیزاسیون از بالا به پایین با افزایش عدد اتمی و افزایش تعداد لایه‌ها بعلت دور شدن الکترون ظرفیت از هسته کاهش می‌یابد.

اطلاعات صنعتی

هیدروکسید ، کلرید و کربنات سدیم ، از جمله ترکیبات شیمیایی مهم صنعتی هستند. هیدروکسید سدیم از الکترولیز آب شور اشباع شده در پیل با کاتد فولادی و آند تیتانیوم تولید می‌شود. کربنات سدیم با فرآیند سالوی تهیه می‌شود. در این فرآیند کلرید سدیم قابل حل در آب به بی‌کربنات سدیم نامحلول تبدیل شده و بعد از صاف کردن و حرارت دادن به کربنات سدیم تبدیل می‌شود.

به هر حال محصول اصلی در این فرآیند کلرید کلسیم است و فرآیند رسوبگیری و حرارت و تهیه کربنات سدیم به کارخانه بستگی دارد. فرایند سالوی رفته رفته

فلزات قلیایی

جای خود را به تهیه کربنات سدیم از جداسازی  و تلخیص کربنات سدیم موجود به معادن می‌دهد.

طیف سنج جرمی

اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر می‌گردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونه‌ای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر می‌توانند ایزوتوپ داشته باشند. تا جایی که می‌دانیم، قدیمیترین طیف سنج جرمی در سال 1918 ساخته شد.


اما روش طیف سنجی جرمی تا همین اواخر که دستگاههای دقیق ارزانی در دسترس قرار گرفتند، هنوز مورد استفاده چندانی نداشت. این تکنیک با پیدایش دستگاههای تجاری که بسادگی تعمیر و نگهداری می‌شوند و با توجه به مناسب بودن قیمت آنها برای بیشتر آزمایشگاههای صنعتی و آموزشی و نیز بالا بودن قدرت تجزیه و تفکیک ، در مطالعه تعیین ساختمان ترکیبات از اهمیت بسیاری برخوردار گشته است.

اصول طیف سنجی جرمی

به بیان ساده ، طیف سنج جرمی سه عمل اساسی را انجام می‌دهد:


  1. مولکولها توسط جرایاناتی از الکترونهای پرانرژی بمباران شده و بعضی از مولکولها به یونهای مربوطه تبدیل می‌گردند. سپس یونها در یک میدان الکتریکی شتاب داده می‌شوند.

  2. یونهای شتاب داده شده بسته به نسبت بار/جرم آنها در یک میدان مغناطیسی یا الکتریکی جدا می‌گردند.

  3. یونهای دارای نسبت بار/جرم مشخص و معین توسط بخشی از دستگاه که در اثر برخورد یونها به آن ، قادر به شمارش آنها است، آشکار می‌گردند. نتایج داده شده خروجی توسط آشکار کننده بزرگ شده و به ثبات داده می‌شوند. علامت یا نقشی که از ثبات حاصل می‌گردد یک طیف جرمی است، نموداری از تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم.

دستگاه طیف سنج جرمی

هنگامی که هر یک از عملیات را بدقت مورد بررسی قرار دهیم، خواهیم دید که طیف سنج جرمی واقعا پیچیده‌تر از آن چیزی است که در بالا شرح داده شد.

سیستم ورودی نمونه

قبل از تشکیل یونها باید راهی پیدا کرد تا بتوان جریانی از مولکولها را به محفظه یونیزاسیون که عمل یونیزه شدن در آن انجام می‌گیرد، روانه ساخت. یک سیستم ورودی نمونه برای ایجاد چنین جریانی از مولکولها بکار برده می‌شود. نمونه‌هایی که با طیف سنجی جرمی مورد مطالعه قرار می‌گیرند، می‌توانند به حالت گاز ، مایع یا جامد باشند. در این روش باید از وسایلی استفاده کرد تا مقدار کافی از نمونه را به حالت بخار در آورده ، سپس جریانی از مولکولها روانه محفظه یونیزاسیون شوند.

در مورد گازها ، ماده ، خود به حالت بخار وجود دارد. پس ، از سیستم ورودی ساده‌ای می‌توان استفاده کرد. این سیستم تحت خلاء بوده، بطوری که محفظه یونیزاسیون در فشاری پایینتر از سیستم ورودی نمونه قرار دارد.

روزنه مولکولی

نمونه به انبار بزرگتری رفته که از آن ، مولکولهای بخار به محفظه یونیزاسیون می‌روند. برای اطمینان از اینکه جریان یکنواختی از مولکولها به محفظه یونیزاسیون وارد می‌شود، قبل از ورود ، بخار از میان سوراخ کوچکی که "روزنه مولکولی" خوانده می‌شود، عبور می‌کند. همین سیستم برای مایعات و جامدات فرار نیز بکار برده می‌شود. برای مواد با فراریت کم ، می‌توان سیستم را به گونه‌ای طراحی کرد که در یک اجاق یا تنور قرار گیرد تا در اثر گرم کردن نمونه ، فشار بخار بیشتری حاصل گردد. باید مراقب بود که حرارت زیاد باعث تخریب ماده نگردد.

در مورد مواد جامد نسبتا غیر فرار ، روش مستقیمی را می‌توان بکار برد. نمونه در نوک میله‌ای قرار داده می‌شود و سپس از یک شیر خلاء ، وارد محفظه یونیزاسیون می‌گردد. نمونه در فاصله بسیار نزدیکی از پرتو یونیزه کننده الکترونها قرار می‌گیرد. سپس آن میله ، گرم شده و تولید بخاری از نمونه را کرده تا در مجاورت پرتو الکترونها بیرون رانده شوند. چنین سیستمی را می‌توان برای مطالعه نمونه‌ای از مولکولهایی که فشار بخار آنها در درجه حرارت اتاق کمتر از 9 - 10 میلیمتر جیوه است، بکار برد.

محفظه یونیزاسیون

هنگامی که جریان مولکولهای نمونه وارد محفظه یونیزاسیون گشت ، توسط پرتوی از الکترونهای پرانرژی بمباران می‌شود. در این فرآیند ، مولکولها به یونهای مربوطه تبدیل گشته و سپس در یک میدان الکتریکی شتاب داده می‌شوند. در محفظه یونیزاسیون پرتو الکترونهای پرانرژی از یک "سیم باریک" گرم شده ساطع می‌شوند. این سیم باریک تا چند هزار درجه سلسیوس گرم می‌شود. به هنگام کار در شرایطی معمولی ، الکترونها دارای انرژی معادل 70 میکرون - ولت هستند.

این الکترونهای پرانرژی با مولکولهایی که از سیستم نمونه وارد شده‌اند، برخورد کرده و با برداشتن الکترون از آن مولکولها ، آنها را یونیزه کرده و به یونهای مثبت تبدیل می‌کنند. یک "صفحه دافع" که پتانسیل الکتریکی مثبتی دارد، یونهای جدید را به طرف دسته‌ای از "صفحات شتاب دهنده" هدایت می‌کند. اختلاف پتانسیل زیادی (حدود 1 تا 10 کیلو ولت) از این صفحات شتاب دهنده عبور داده می‌شود که این عمل ، پرتوی از یونهای مثبت سریع را تولید می‌کند. این یونها توسط یک یا چند "شکاف متمرکز کننده" به طرف یک پرتو یکنواخت هدایت می‌شوند.

بسیاری از مولکولهای نمونه به هیچ وجه یونیزه نمی‌شوند. این مولکولها بطور مداوم توسط مکنده‌ها یا پمپ های خلا که به محفظه یونیزاسیون متصل نیستند، خارج می‌گردند. بعضی از این مولکولها از طریق جذب الکترون به یونهای منفی تبدیل می‌شوند. این یونهای منفی توسط صفحه دافع جذب می‌گردند. ممکن است که بخش کوچکی از یونهای تشکیل شده بیش از یک بار داشته باشند، (از دست دادن بیش از یک الکترون) اینها مانند یونهای مثبت تک ظرفیتی ، شتاب داده می‌شوند.

پتانسیل یونیزاسیون

انرژی لازم برای برداشتن یک الکترون از یک اتم یا مولکول ، پتانسیل یونیزاسیون آن است. بسیاری از ترکیبات آلی دارای پتانسیل یونیزاسیونی بین 8 تا 15 الکترون ولت هستند. اما اگر پرتو الکترونهایی که به مولکولها برخورد می‌کند، پتانسیلی معادل 50 تا 70 الکترون ولت نداشته باشد، قادر به ایجاد یونهای زیادی نخواهد بود. برای ایجاد یک طیف جرمی ، الکترونهایی با این میزان انرژی برای یونیزه کردن نمونه بکار برده می‌شوند.

تجزیه گر جرمی

پس از گذر کردن از محفظه یونیزاسیون ، پرتو یونها از درون یک ناحیه کوتاه فاقد میدان عبور می‌کند. سپس آن پرتو ، وارد "تجزیه گر جرمی" شده که در آنجا ، یونها بر حسب نسبت بار/جرم آنها جدا می‌شوند. انرژی جنبشی یک یون شتاب داده شده برابر است با:

که m جرم یون ، v سرعت یون ، e بار یون و V اختلاف پتانسیل صفحات شتاب دهنده یون است.


در حضور یک میدان مغناطیسی ، یک ذره باردار مسیر منحنی شکلی را خواهد داشت. معادله‌ای که شعاع این مسیر منحنی شکل را نشان می‌دهد به صورت زیر است:



که r شعاع انحنای مسیر و H قدرت میدان مغناطیسی است.


اگر این دو معادله را برای حذف عبارت سرعت ترکیب کنیم، خواهیم داشت:




این معادله مهمی است که رفتار و عمل یک یون را در بخش تجزیه‌گر جرمی یک طیف سنج جرمی توجیه می‌کند.

تجزیه گر جرمی و قدرت تفکیک

از معادله فوق چنین بر می‌آید که هر قدر ، مقدار m/e بزرگتر باشد، شعاع انحنای مسیر نیز بزرگتر خواهد بود. لوله تجزیه‌گر دستگاه طوری ساخته شده است که دارای شعاع انحنای ثابتی است. ذره‌ای که نسبت m/e صحیحی داشته باشد، قادر خواهد بود تا طول لوله تجزیه‌گر منحنی شکل را طی کرده ، به آشکار کننده نمی‌رسند. مسلما اگر دستگاه ، یونهایی را که جرم بخصوصی دارند، نشان دهد. این روش چندان جالب نخواهد بود.

بنابراین بطور مداوم ، ولتاژ شتاب دهنده یا قدرت میدان مغناطیسی تغییر یافته تا بتوان کلیه یونهایی که در محفظه یونیزاسیون تولید گشته‌اند را آشکار ساخت. اثری که از آشکار کننده حاصل می‌گردد، بصورت طرحی است که تعداد یونها را بر حسب مقدار m/e آنها رسم می‌کند. فاکتور مهمی که باید در یک طیف سنج جرمی در نظر گرفتن قدرت تفکیک آن است. قدرت تفکیک بر طبق رابطه زیر تعریف می‌شود:


که R قدرت تفکیک ، M جرم ذره و M اختلاف جرم بین یک ذره با جرم M و ذره بعدی با جرم بیشتر است که می‌تواند توسط دستگاه تفکیک گردد. دستگاههایی که قدرت تفکیک ضعیفی دارند، مقدار R آنها حداکثر 2000 در بعضی مواقع قدرت تفکیکی به میزان پنج تا ده برابر مقدار فوق مورد نیاز است.

آشکار کننده

آشکار کننده بسیاری از دستگاهها ، شامل یک شمارشگر است که جریان تولیدی آن متناسب با تعداد یونهایی است که به آن برخورد می‌کند. با استفاده از مدارهای الکترون افزاینده می‌توان آن قدر دقیق این جریان را اندازه گرفت که جریان حاصل از برخورد فقط یک یون به آشکار کننده اندازه ‌گیری شود.

ثبات آشکار کننده

سیگنال تولید شده از آشکار کننده به یک ثبات داده می‌شود که این ثبات خود طیف جرمی را ایجاد می‌نماید. در دستگاههای جدید ، خروجی آشکار کننده از طریق یک سطح مشترک به رایانه متصل است. رایانه قادر به ذخیره اطلاعات بوده و خروجی را به هر دو صورت جدولی و گرافیکی در می‌آورد. دست آخر داده‌ها با طیفهای استاندارد ذخیره شده موجود در رایانه مقایسه می‌گردد.

در دستگاهها قدیمیتر ، جریان الکترونی حاصل از آشکار کننده به یک سری از پنج گالوانومتر با حساسیتهای متفاوت داده می‌شود. پرتو نوری که به آینه‌های متصل به گالوانومترها برخورد می‌کند و به یک صفحه حساس به نور منعکس می‌گردد. بدین طریق یک طیف جرمی با پنج نقش بطور همزمان ، هر یک با حساسیتی متفاوت ایجاد می‌گردد. در حالی که هنوز دستگاه قویترین قله‌ها را در صفحه طیف نگاه می‌دارد، با استفاده از این پنج نقش ثبت ضعیفترین قله‌ها نیز ممکن می‌گردد.

اسپین الکترون

می‌‌دانیم که کره زمین دارای دو نوع حرکت وضعی و انتقالی است. حرکت انتقالی آن به دور خورشید بوده و حرکت وضعی به دور خودش می‌‌باشد. هر یک از این دو نوع حرکت ، دارای اندازه حرکت زاویه‌ای مخصوص به خود هستند که در مورد حرکت انتقالی ، اندازه حرکت زاویه‌ای مداری و در مورد حرکت وضعی ، اندازه حرکت زاویه‌ای اسپینی می‌‌گویند، بدیهی است که اندازه حرکت زاویه‌ای کل برابر با مجموع این دو اندازه حرکت است.

اگر مدلی را در نظر بگیریم که زمین فقط یک نقطه مادی باشد، انتساب تکانه زاویه ای به آن بی‌معنی خواهد بود، اما در مدل دیگری که زمین را با ابعاد محدود در نظر می‌‌گیریم، وجود اندازه حرکت زاویه‌ای اسپینی نیز امکان پذیر است. لذا اگر این قضیه را در مورد مدل اتمی بوهر بکار ببریم، با این فرض که الکترون یک بار نقطه‌ای نبوده، بلکه یک کره کوچک فرض شود، در این صورت الکترون علاوه بر اندازه حرکت زاویه‌ای مداری دارای اندازه حرکت زاویه‌ای اسپینی نیز خواهد بود.



تائید تجربی اسپین الکترون

از آن جا که کره مفروض باردار (یعنی الکترون) دارای حرکت است، لذا حرکت چرخشی آن معادل حلقه جریانی است که گشتاور مغناطیسی خاص خود را نیز دارد. اگر واقعا چنین گشتاور مغناطیسیی وجود داشته باشد، باید با میدان برهمکنش داشته و انرژی برهمکنشی نظیر این گشتاور مغناطیسی وجود داشته باشد. این اثرها غیر از برهمکنش گشتاور مغناطیسی مداری با میدان مغناطیسی خارجی است.

بنابراین باید جابجایی در ترازهای انرژی اتمها و نیز در طول موج خطوط طیفی که از اتمها گسیل می‌‌شود، ظاهر شود که مربوط به اسپین الکترون باشد. در طیف سنج های دقیق چنین جابجائی‌هایی دیده شده‌اند. این نوع آزمایشها و نیز شواهد تجربی دیگر نشان می‌‌دهند که الکترون ، تکانه زاویه‌ای و گشتاور مغناطیسی دارد که به حرکت آن بر مدار پیرامون هسته مربوط نبوده، بلکه به ذات ذره مربوط است.

ویژگیهای اندازه حرکت زاویه‌ای اسپینی

تکانه زاویه‌ای یا اندازه حرکت زاویه‌ای اسپینی الکترون را با S نشان می‌‌دهند. مانند اندازه حرکت زاویه‌ای مداری ، این کمیت نیز کوانتیده است. بنابراین در میدان مغناطیسی ، S هر جهتی را اختیار نمی‌‌کند و فقط مجاز است در جهتهایی قرار گیرد که مولفه آن در امتداد میدان مغناطیسی (اگر میدان مغناطیسی در جهت z فرض شود) ، مضرب 2/1 از ћ باشد. یعنی:


تفاوت بارز مولفه S_z با مولفه z انداه حرکت زاویه‌ای مداری ، در این است که اندازه حرکت زاویه‌ای مداری برخلاف S_z مضرب صحیحی از ћ است.

اسپین الکترون در مکانیک کوانتومی

در مکانیک کوانتومی ‌که تابع موج جانشین مدارهای بوهر می‌‌شود، ارائه تصویری از چرخش الکترون غیر ممکن است. اگر توابع موج الکترون را مانند توده‌های ابری تصور کنیم که پیرامون هسته قرار گرفته‌اند، می‌‌توان تعداد بی‌شماری پیکان بسیار کوچک را در نظر مجسم کرد که در درون توده ابری پراکنده‌اند و همگی در یک راستا ، z+ یا z- ، امتداد دارند. البته آنچه گفته شد یک تصور خیالی است و امیدی به دیدن ساختار اتمی ‌وجود ندارد. چون ابعاد آن هزاران مرتبه از طول موجهای نور کوچکتر است. همچنین برهمکنش فوتونها با اتم ، ساختاری را که دیدن آن مورد نظر است، بشدت تغییر می‌‌دهد.

در هر حال ، مفهوم اسپین الکترون با آزمایشهای متعدد تجربی مورد تائید قرار گرفته است و در مکانیک کوانتومی ‌برای مشخص کردن عدد کوانتومی ‌جدید به نام عدد کوانتومی ‌اسپینی الکترون در نظر گرفته می‌‌شود. همان گونه که اشاره کردیم، این عدد کوانتومی ‌‌فقط می‌‌تواند مقادیر pm 1/2 را به خود بگیرد.
 

ساختار ریز

شکافت تراز انرژی در اثر گشتاور مغناطیسی اسپین الکترون در نبود میدان خارجی را جفت شدگی اسپین مدار می‌‌نامند. چون اسپین الکترون با میدان مغناطیسی ناشی از اندازه حرکت زاویه‌ای مداری (حرکت الکترون پیرامون هسته) برهمکنش می‌‌کند. در مکانیک کوانتومی ‌با استفاده از حل معادله شرودینگر مقدار این شکافتگی را می‌‌توان تعیین نمود. شکافتگی‌هایی را که از این نوع برهمکنش مغناطیسی در خطوط طیف مربوط به اتمهای مختلف ایجاد می‌‌شوند، در مجموع ساختار ریز می‌‌گویند.

البته شکافتگی‌های به مراتب کوچکتر دیگری نیز وجود دارند که حاصل برهمکنش گشتاور مغناطیسی هسته با تکانه زاویه‌ای مداری و اسپین الکترون هستند و ساختار فوق ریز نام دارد.

اصل طرد پاولی

اصل طرد پاولی بیان می‌کند که هیچ دو الکترونی ، یا بطور کلی هیچ دو فرمیون مشابهی ، نمی‌توانند حالت کوانتومی یکسانی داشته باشند؛ (مثلا بطور همزمان در یک مکان باشند). این اصل برای درک پدیده‌های مختلف ، ازذرات بنیادی گرفته تاساختار ستاره ها ، نقش اساسی ایفا می‌کند. اصلی هست که بنا به آن ، هیچ دو الکترونی در اتم وجود ندارد که مجموعه اعداد کوانتومی آنها مشابه باشد.

در سال 1924، "ادموند استونر" برای اتمها مدلی پیشنهاد کرد که با تجربیات طیف نمایی و جدول تناوبی سازگار بود و در آن ، هر الکترون اتمی سه عدد کوانتومی ، به‌ترتیب ، متناظر با اعداد کوانتومی و تکانه زاویه‌ای مداری بود. n و l و عدد کوانتومی داخلی ، J+1/2 داشت و تعداد الکترونها در هر پوسته الکترونی برابر با (2S+1) یا دو برابر عدد کوانتومی داخلی بود.

"ولفگانگ پاولی" در سال 1935 نشان داد که ساختار پوسته‌ای کامل ترازهای انرژی را می‌توان با تخصیص یک عدد کوانتومی چهارم ، به الکترون ، mj ، که مقادیر مجاز j- و j+1- و ... و j-1 و j را اختیار می‌کند، توضیح داد؛ اما به شرطی که از اصل طرد جدید پیروی شود. هیچ دو الکترونی نمی‌توانند چهار عدد کوانتومی (mj , j , l , n) یکسان داشته باشند. عدد کوانتومی چهارم به تکانه زاویه‌ای ذاتی (اسپین) الکترون نسبت داده می‌شود که نخستین بار توسط "ژرژ اولنبک" و "ساموئل گوداشمیت" مطرح شد.

اصل طرد پاولی و مدل اتمی بوهر

وقتی که مدل اتمی بوهر با موفقیت ارائه و پذیرفته شد، این پرسش مطرح شد که الکترونها در سیستم سنگین چگونه سازمان پیدا می‌کنند؟ معادله شرودینگر هیچگونه جواب قانع کننده ای برای این پرسش نداشت. چون مطابق این معادله اگر دمای یک سیستم را به دمای نزدیک به دمای صفر مطلق نزدیک کنیم، آنگاه انتظار می‌رود که تمام لکترونهای یک اتم به پایینترین سطح انرژی (n=1) منتقل شوند، اما نتایج تجربی طیف شناسها را نمی‌توان با این فرض توضیح داد. تا اینکه فردی به نام "ولفگانگ پاولی" توانست این معما را حل کند. وی نظریه‌ای پیشنهاد داد که امروزه این نظریه به اصل طرد پاولی معروف است.

مطابق این اصل در یک اتم در حالت پایه ، هیچ دو الکترونی را نمی‌توان یافت که هر چهار عدد کوانتمی آنها یکسان باشد. اعداد کوانتمی الکترون ها عبارتند از:


  • عدد کوانتمی اصلی که با n نشان داده می‌شود.
  • عدد کوانتمی مداری که با L نشان داده می‌شود.
  • عدد کوانتمی مغناطیسی که با m نشان داده می‌شود.
  • عدد کوانتمی اسپین که با s نشان داده می‌شود.

بین هر جفت الکترون ، حداقل یکی از این اعداد متفاوت از دیگری هست، این بیان اصل طرد پاولی در مدل اتمی بوهر است.

شرط برقراری اصل طرد پاولی

در پی ظهور مکانیک موجی در 1926 ، "پاول ویراک" و مستقل از او ، "ورنر هایزنبرگ" نشان دادند که اگر تابع موج سیستمهای الکترونی پاد متقارن باشد، یعنی اگر بر اثر تعویض تمام مختصات هر زوج الکترونی از جمله اسپین آنها تابع موج تغییر علامت بدهد، اصل طرد پاولی خود به خود برقرار خواهد شد. به عبارت کلّی‌تر ، تابع موج هر سیستمی از ذرات یکسان باید براثر تعویض تمام مختصات هر دو ذره‌ای یا بدون تغییر بماند که در این صورت ذرات بوزن نامیده می‌شوند.

اسپین بوزون مضرب درستی از ħ/2 است. در صورتی که اسپین فرمیونها مضرب فردی از (ħ/2 و1/2 ħ/2 , 3/2 ħ/2 …) است. فقط فریونها از اصل طرد پاولی پیروی می‌کنند، در نظریه ، این وابستگی بین اسپین و آمار ذرات را یک واقعیت تجربی تلقی می‌کنند، در صورتی که در نظریه میدان الکتریکی کوانتومی نیستند، همانطور که پاولی در سال 1940 در اثر معروف قضیه اسپین - آمار خود نشان داد و این وابستگی یک پیامد کلی علیتی به‌حساب می‌آید.

ویژگی اصل طرد پاولی

اصل طرد برخی از بنیادی‌ترین ویژگی‌های ماده را در تمامی اشکالش توصیف می‌کند. اگر به خاطر اصل طرد پاولی نبود، تمام اتمها در اصل ساختار الکترونی یکسانی می‌داشتند و این ساختار به‌صورت پوسته‌ای از الکترونها در اطراف هسته در می‌آمد. هیدروژن و هلیوم در واقع یک پوسته دارند، اما برای لیتیوم که سه الکترون دارد، وضعیت فرق می‌کند. دو الکترون اول ، اوربیتال (یا حالت انرژی) یکسانی را با اسپینهای متقابل اشغال می‌کنند. اما به‌علت اصل طرد پاولی ، الکترون سوم باید به اوربیتال جدیدی برود که به‌طور متوسط از هسته دورتر است. به این ترتیب ، بر خلاف هلیوم ، لیتیم براحتی یونیده می‌شود و در واکنش های شیمیایی شرکت می‌کند.

اصل طرد پاولی در هسته‌ها

در ساختار پوسته‌ای هسته‌ها هم با وضعیت مشابهی رو برو می‌شویم. چون پروتون و نوترون می‌توانند از طریق برهمکنش ضعیف به یکدیگر تبدیل شوند و در همان حال هر دو تحت تأثیر نیروهای هسته‌ای مشابهی قرار دارند به بقیه است که آنها را به عنوان دو حالت از یک نوکلئون که از لحاظ مختصه ذاتی یا عدد کوانتومی دیگری به نام اسپین ایزوتوپی (ایزوسپین) با یکدیگر تفاوت دارند، در نظر بگیریم.

در این صورت اصل طرد پاولی ایجاب می‌کند که هیچ دو نوکلئونی در یک حالت که با اعداد کوانتومی فضایی و اسپینی و ایزوسپینی یکسان مشخص می‌شود، نباشند. از اصل پاولی می‌توان حتی پیامدهای بنیادی‌تری در سطح زیر هسته‌ای بدست آورد.

یک مثال عملی برای اصل طرد پاولی

به عنوان مثال ، باریونها متشکل از سه کوارک هستند و نتایج آزمایشی حاکی از آن است که ترازهای آنها تابع موجهایی دارند که نسبت به تعویض اعداد کوانتومی فضایی اسپینی و طعم دو کوارک متقارن‌اند. این امر ظاهرا به دلیل آنکه کوارکها فرمیون هستند، با اصل پاولی در تناقض است. اعتقاد راسخ فیزیکدانان به اعتبار عام اصل طرد پاولی ، به فرض و متعاقبا به تأیید یک عدد کوانتومی کوارکی جدید ، به نام رنگ انجامیده است. به این ترتیب ، هیچ دو کوارکی نمی‌توانند حالتهایی را که از نظر فضای اسپینی ، طعم و رنگ یکسان باشند، اشغال کنند.

اصل طرد پاولی در تراز فرعی

مجموعه‌ تمام حالتهای اشغال شده در هر سیستم بس الکترونی را دریای فرمی و بالاترین تراز اشغال شده در دمای صفر مطلق را انرژی فرمی می‌نامند. در نظریه فلزات که انرژیهای فرمی نوعا از مرتبه چند الکترون ولت ، یعنی خیلی بیشتر از انرژی میانگین KT = 0.02 ev برای گاز ایده‌ال در دمای معمولی هستند، از همین تصویر استفاده می‌شود.

چون اصل طرد مانع می‌شود که تمام الکترونها در پایینترین حالت انرژی تجمع کنند، بعضی از آنها حتی در دماهای بسیار پایین انرژهایی نزدیک به انرژی فرمی ، یعنی انرژیهای متناظر با دماهای چند هزار درجه دارند. بنابراین گرم کردن فلز از T = 0 تا دمای معمولی تأثیر کمی روی توزیع انرژی الکترونها ، تأثیر ناچیزی روی گرمای ویژه فلزات دارند و همچنین چرا فلزات نوعا باید تا حد گداختگی داغ باشند تا الکترونها بتوانند از آنها خارج شوند.

مشخص کردن تراز نوار رسانش توسط اصل طرد پاولی

اصل طرد ، همراه با این نکته که ترازهای انرژی الکترونی جامدات در نوارهای انرژی مشخصی توزیع شده‌اند، مبنای نظریه رسانندگی الکتریکی و بسیاری از جنبه‌های فن‌آوری جدید است. جامدی که بالاترین نوار اشغال شده آن ، طبق اصل طرد ، کاملا پر شده باشد، یک عابق الکتریکی است. الکترونهای آن بر اثر میدان الکتریکی نمی‌توانند آزادانه جریان پیدا کنند. به زبان ساده ، به‌علت اصل پاولی جایی برای رفتن ندارند.

از طرف دیگر ، اگر فقط قسمتی از بالاترین نوار اشغال شده پر باشد، جسم جامد رسانای خوبی برای الکتریسیته است. در نیم رساناها گاز بین نوار کاملا پر شده و نوار رسانش مجاز بعدی کوچک ، نوعا در حدود 2ev یا کمتر است. در دمای صفر است که در دمای معمولی بعضی از الکترونها می‌توانند از آن عبور کنند و بخشی از نوار رسانش را پر کنند در نتیجه رسانندگی الکتریکی با افزایش دما افزایش می‌یابد.

اثر فوتوالکتریک

الکترونها می‌توانند با جذب تابش به نوار رسانش نیم رسانا صعود کنند. البته با این شرط که انرژی فوتون فرودی از گاف انرژی بیشتر باشد. این اثر فوتوالکتریک ، مبنای خیلی از کاربردها از قبیل در بازکنهای خودکار است که در آنها جریان الکتریکی با تابش نور کنترل می‌شوند. وقتی که یک الکترون وارد نوار رسانش می‌شود، در دریای فرمی یک جای خالی یا حفره ، باقی می‌ماند که اشغال آن از نظر اصل پاولی مجاز است.

یک الکترون نوار رسانش می‌تواند به چنین حفره‌ای منتقل شود و با این کار ، طی فرآیندی که مشابه گسیل فوتون به هنگام پرش الکترون اتمی به حالتی با انرژی پایینتر است، نور تابش می‌شود. این فرآیند تابشی الکترون و حفره اساس کار دیود نور گسیل (LED) است. و در این فرآیند وقتی که بجای خود به خودی بودن از نوع تحریکی باشد، اساس کار لیزرهای نیم رسانا است. طرز کار ترانزیستورها ، پیوندگاههای دیویدی را هم می‌توان با ملاحظات مشابهی ، بر مبنای تولید الکترونهای رسانش در پی آلاییدگی نیم رساناها توضیح داد.

نظریه بوهر

در مورد ساختار اتم ، مدلهای مختلفی ارائه شده است. هر مدل جدیدی که ارائه می‌گردید، قسمتی از نقایص مدل قبلی را از بین می‌برد، ولی با این حال خودش نیز ناقص بود. تقریبا اولین مدل را "تامسون" ارائه داد. تامسون فرض کرده بود که الکترونها در توزیعی از بار مثبت که گستردگی آن را شعاع اتم تعیین می‌کند، غوطه‌ور هستند. بعد از تامسون ، "رادرفورد" مدل سیاره‌ای خود را ارائه داد.


مدل رادرفورد ، برخی نقایص مدل تامسون را نداشت، ولی در عین حال ناقص بود. بعد از رادفورد ، "بوهر" مدل خود را بر اساس خاصیت کوانتایی تابش بیان کرد.

اصلاح نظریه رادرفورد توسط بوهر

"ارنست رادرفورد" ، نخستین دانشمندی بود که برای مطالعه اتمها از پرتابه‌هایی استفاده کرد که در واپاشی رادیواکتیو گسیل می‌شدند. رادرفورد یک صفحه طلا را بوسیله ذرات آلفا بمباران کرده و ذرات آلفای پراکنده شده را مورد مطالعه قرار داد. مدل رادرفورد هر چند نتایج حاصل از پراکندگی ذرات آلفا را از لحاظ کمی ‌به خوبی توضیح می‌داد، ولی با دو مشکل اساسی مواجه بود:


  • در این مدل فرض می‌شد که الکترونها حرکت تناوبی دارند، اما طیف تابشی اتمها ساختار هارمونیکی پیشگویی شده را نداشتند.

  • مدل رادرفورد فاقد ساز و کاری بود که برای پایداری اتمها لازم است. هر الکترون در مدار دایره‌ای یا بیضی شکل پیوسته شتاب می‌گیرد، لذا بر اساس نظریه الکترومغناطیس کلاسیک باید تابش کند. اتلاف دائم انرژی در عرض مدت بسیار کوتاهی به فروریزی اتم می‌انجامد.

اصل موضوع بوهر

دو سال بعد از این که رادرفورد مدل اتمی‌ خود را ارائه داد، "نیلز بوهر" ، چندین اصل موضوع را بیان کرد که کاملا با فیزیک کلاسیک در تناقض بودند. بوهر ساختار طیفی را بخوبی توضیح داده ، مشکل پایداری اتم را حل می‌کرد. اصول بوهر عبارتند از:


  • الکترونها مقید هستند در مدارهایی حرکت کنند که در آنها اندازه حرکت زاویه ای الکترونها مضرب درستی از ħ=frach باشد. به عبارت دیگر ، در مورد مدارهای دایره‌ای شکل با شعاع r ، سرعت الکترون (v) باید از رابطه mvr=nħ تبعیت کند. لازم به ذکر است که الکترونها در این مدارها با وجود شتابی که دارند، تابش نمی‌کنند. بنابراین مسیرهای حرکت الکترونها را در این مدل ، مدارهای ایستا می‌گویند.

  • الکترونها می‌توانند گذارهای گسسته‌ای از یک مدار مجاز به مدار مجاز دیگر انجام دهند. تغییر انرژی این دو تراز به صورت تابشی که فرکانس آن وابسته به تفاضل انرژی این دو تراز است، ظاهر می‌شود. اگر اتم ، تابش جذب کند، باز الکترونها بر اثر این تابش به یک تراز انرژی بالاتر می‌روند.
     

نتایج حاصل از نظریه ‌بوهر

  • بر اساس اصول بوهر ، انرژی الکترون در مدارهای اتمی‌ ، کوانتیده خواهد بود. به بیان دیگر ، یک عدد کوانتومی به نام عدد کوانتومی ‌اصلی تعریف می‌شود که این عدد فقط می‌تواند عدد صحیح باشد. بنابراین انرژی الکترون در مدار اتمی ‌نمی‌تواند هر مقداری را به خود بگیرد.

  • نیرویی که هسته اتم بر الکترونها وارد می‌کند، یک نیروی کولنی مرکزگرا می‌باشد. این نیروی جانب مرکز ، انرژی لازم جهت گردش الکترونها پیرامون هسته را فراهم می‌کند. بنابراین چون mvr همان اندازه حرکت الکترون در هر مدار اتمی‌ می‌باشد، بنابراین اصل موضوعه اول بوهر ایجاب می‌کند که اندازه حرکت زاویه ای الکترون یک کمیت کوانتومی ‌باشد، اصل موضوعه اول بوهر به عنوان شرط کوانتش اندازه حرکت زاویه‌ای می‌باشد.

نقایص این نظریه

موفقیت نظریه بوهر با اتمهای هیدروژن‌گونه انگیزه زیادی را برای تحقیقات بیشتر درباره اتم بوهر فراهم آورد. با وجود برخی دستاوردهای شگفت‌آور بوهر و دیگران ، نظریه بوهر موقتی بود. این نظریه ، درباره این که الکترونها چه هنگامی ‌پرش خود را انجام می‌دهند، چیزی نمی‌گفت و قاعده کوانتش به دستگاههای تناوبی منحصر بود.

بیان کلی‌تری از نظریه بوهر را "سامر فیلد" و "ویلسون" عنوان کردند که هیچ کمکی به بررسی مسائل ، غیر از مسائلی که به مدل بوهر مربوط می‌شد، نکرد. کوانتش اندازه حرکت زاویه‌ای در موارد دیگر نیز برقرار بود. کاربرد مدل بوهر در مدارهای بیضی شکل تصویر کاملتری از اتمهای هیدروژن‌گونه را بدست می‌داد و در آزمایشهای اشترن - گرلاخ مستقیما مشاهده شد.