شیمی

شیمی و تمامی موارد مربوط به آن

شیمی

شیمی و تمامی موارد مربوط به آن

پالایشگاه

هر پالایشگاه ، دارای طرحهای تولید خاص خود است که بر اساس تجهیزات فراهم ، هزینه‌های عملیاتی و میزان تقاضا برای فراورده‌ها مشخص می‌شوند. طرح تولید بهینه برای هر پالایشگاه ، بر اساس ملاحظات اقتصادی مشخص می‌گردد و عملیات دو پالایشگاه هرگز کاملا مشابه یکدیگر نیستند.

 

فراورده‌های نفتی

درحالی‌که مصرف کننده عادی تصور می‌کند که شمار فراورده‌های نفتی نظیر بنزین ، سوخت جت ، نفت سفید و غیره محدود است، ولی بررسیهایی که موسسه نفت آمریکا ( API ) در مورد پالایشگاههای نفت و کارخانه‌های پتروشیمی انجام داده است، نشان می‌دهد که بیش از 2000 فراورده نفتی با مشخصات منحصر بفرد تولید می‌شود که در 17 گروه طبقه‌بندی می‌شوند و عبارتند از:

گازهای سوختی - گازهای مایع - انواع بنزین - سوختهای توربین گازی (جت) - نفت سفید - فراورده های میان تقطیر (سوخت دیزل و نفت کوره های سبک) - نفت کوره باقیمانده ای - روغن‌های روان‌ساز - روغن‌های سفید - فراورده های میان روغن‌های ترانسفورماتور و کابل- گریس- مومها (واکس) - آسفالتها - ککها - دوده‌ها - مواد شیمیایی ، حلالها ، متفرقه.

معمولا شمار فراورده‌هایی که طراحی پالایشگاه را جهت می‌دهند نسبتا کم است. فرایندهای اصلی پالایش را با توجه به فراورده‌هایی که تولیدشان زیاد است مانند بنزین ، سوخت جت ، سوخت دیزل طراحی می‌کنند. بعضی از اجزای نفت خام را همان‌گونه که هستند (یعنی فراورده ها تقطیر مستقیم) بفروش می‌رسانند و یا اینکه عملیات پالایش بعدی را بر روی آنها انجام می‌دهند تا فراورده‌های با ارزشتری بدست آورند. ادامه مطلب ...

میعان

انرژی جنبشی مولکولهای یک مایع از توزیع ماکسول - بولتزمن پیروی می‌کند که نظیر توزیع انرژی جنبشی بین مولکولهای یک گاز است. انرژی جنبشی مولکول معینی از یک مایع ضمن برخورد با سایر مولکولها پیوسته تغییر می‌کند. ولی در لحظه‌ای معین ، تعدادی از مولکولهای یک مجموعه مولکول دارای انرژی نسبتا زیاد و تعدادی دارای انرژی نسبتا کم هستند. فراریت تعدادی از مولکولهای با انرژی زیاد از مایع سبب می‌شود که انرژی جنبشی متوسط مولکولهای باقیمانده در مایع کاهش یابد و از دمای کاسته شود.

وقتی مایعی از یک ظرف سرباز تبخیر می‌شود، انتقال گرما از محیط به مایع صورت می‌گیرد و در نتیجه ، دمای مایع ثابت باقی می‌ماند و به این ترتیب ، ذخیره مولکولهای پرانرژی تامین می‌شود و این فرایند تا تبخیر تمام ادامه می‌یابد. مقدار کل گرمای لازم برای تبخیر یک مول از مایع در دمای معین آنتالپی مولی آن مایع نامیده می‌شود. در دمای 25ċ


H2O(l) ↔ H2O(g) ∆Hv = +43.8kj

فرآیند فوق فرآیندی برگشت پذیر است. یعنی عکس فرآیند و تبدیل مولکولهای گازی به مایع نیز صورت می‌‌گیرد. ولی این فرآیند ، فرآیندی گرمازا خواهد بود. یعنی مولکولهای گاز برای اینکه به مایع تبدیل شوند، به محیط گرما خواهند داد و میعان صورت خواهد گرفت. آنتالپی تبخیر معمولا در نقطه جوش عادی و بر حسب کیلو ژول بر مول درج می‌شود. گرمای تبخیر یک مایع هم شامل انرژی لازم برای غلبه بر نیروهای جاذبه بین مولکولی و هم شامل انرژی لازم برای انبساط گاز است.

آنتالپی میعان مولی Entalpy of Condensation

وقتی یک مول بر اثر تراکم به مایع تبدیل می‌شود، انرژی آزاد می‌شود. این تغییر آنتالپی را "آنتالپی میعان مولی" می‌نامیم. این کمیت دارای علامت منفی است. ولی از نظر عددی برابر با گرمای تبخیر مولی در همان دما می‌باشد. یعنی:


H2O(g) → H2O(l) ∆Hc = -43.8kj

آنتالپی میعان یک گاز با آنتالپی تبخیر مولی از نظر عددی برابر است. آنتالپی تبخیر یک مایع با افزایش دما کاهش می‌یابد و در دمای بحرانی جسم ، مقدار آن به صفر می‌رسد. پس برای میعان یک گاز باید دما را کاهش دهیم و این کاهش باید بطور منظم انجام گیرد.

تقطیر

روش جداسازی مواد اجزای سازنده یک محلول گوناگونند. یکی از این روش‌ها فرآیند تقطیر است که خود روش‌های مختلفی دارد و از جمله کاربردهای مهم آن در پالایش نفت و جداسازی اجزای آن است.
 

انواع تقطیر

  • تقطیر ساده:اجزای سازنده محلولی از یک ماده حل شده غیر فعال را می‌توان با تقطیر ساده از هم جدا کرد. برای این کار محلول را می‌جوشانیم تا حلال فرار ، تبخیر و از ماده حل شده جدا شود. با سرد کردن بخار ، (میعان) ، حلال مایع جمع‌آوری می‌شود و ماده حل شده به صورت باقی مانده تقطیر باقی می‌ماند.

  • تقطیر جزء به جزء:اجرای سازنده محلول شامل دو جز فرار را که از قانون رائولپیروی می کند، می توان با فرآیند تقطیر جزء به جزء از هم جدا کرد. طبق قانون رائول ، فشار بخار محلول برابر با مجموع اجزای بخار سازنده آن است و سهم هر جزء ، برابر با حاصلضرب کسر مولی آن جزء در فشار بخار آن در حالت خاص است.

مراحل تقطیر با استفاده از قانون رائول

در تقطیر محلولی از A و B ، غلضت A در بخاری که خارج شده و مایع می‌شود، بیش از غلظت آن در مایع باقی‌مانده است. با ادامه عمل تقطیر ، ترکیب درصد اجزا در بخار و مایع دائما تغییر می‌کند و این در هر لحظه عمومیت دارد. با جمع آوری مایعی که از سرد شدن بخار حاصل می‌شود و از تقطیر مجدد آن و با تکرار پی در پی این عمل ، سرانجام می‌توان اجزای سازنده مخلوط اصلی را به صورتی واقعا خالص به دست آورد.

انواع سیستمهای دارای انحراف از قانون رائول

  • سیستمهای که از قانون رائول انحراف مثبت دارند:در این حالت در منحنی فشار کل ، ماکسیممی وجود دارد. این ماکسیم مربوط به محلولی ، با ترکیب درصد معینی است که فشار بخار آن بالاتر از فشار بخار هر یک اجزای خالص است. این نوع محلول که "محلول آزئوتروپ با نقطه جوش مینیمم" نام دارد، در دمایی به جوش می‌آید که پایین‌تر از نقطه جوش هر یک از اجزای آن در حالت خاص است.

  • سیستمهای که از قانون رائول انحراف منفی دارند:اگر سیستمی انحراف منفی از قانون رائول نشان دهد، در منحنی فشار کل مینیممی وجود خواهد داشت. محلولی که غلظت متناظر با این مینیمم دارد، فشار بخاری خواهد داشت که در هر دمایی ، پایین‌تر از فشار بخار هر یک از اجزای آن در حالت خاص است. چنین محلولی در دمایی بالاتر از نقطه جوش هر یک از اجزای سازنده در حالت خاص ، می‌جوشد. این محلول ، "آزئوتروپ با نقطه جوش ماکسیم" نامیده می‌شود.

تعادل بخار با محلول آزئوتروپ

بخار در حالت تعادل با مایع آزئوتروپی چگونه به دست می‌آید؟


بخار در حالت تعادل با مایع همگن که نقطه جوش ماکسیمم یا مینیمم دارد، دارای همان غلظتی است که مایع آن دارد. از این رو آزئوتروپ‌ها ، مانند مواد خالص ، بدون تغییر تقطیر می‌شوند. از محلول جز به جز یک محلول دو جزئی که آزئوتروپی تشکیل می‌دهند، سرانجام یک جزء خالص و آزئوتروپ حاصل می‌شود، ولی دو جزء آن ، بصورت خالص به دست نمی‌آید.

واکنش گرماگیر

بسیاری از کیسه‌‌های سرمازا که برای تخفیف درد در رگ به رگ شدن یک عضله یا پیچ خوردن پا مورد استفاده قرار می‌‌گیرند، حاوی کیسه کوچکی از نیترات آمونیوم در داخل کیسه بزرگتر که حاوی آب است، می‌‌باشد با فشار دادن کیسه سرمازا نیترات آمونیوم از کیسه خارج شده و وارد آب می‌‌شود و چون واکنش آن با آب گرماگیر می‌‌باشد گرمای لازم را از بدن شخص می‌‌گیرد. با گذاشتن این کیسه‌‌ها در محل آسیب دیده ، موضع آسیب دیده سرد شده و فرد درد کمتری احساس می‌کند.

بررسی ترمودینامیکی واکنش گرماگیر

وقتی میزان سطح انرژی در مواد اولیه پایینتر از محصولات باشد، واکنش به دلیل پایدار بودن مواد اولیه نیاز به انرژی دارد تا پیوندهای اولیه شکسته شده و پیوندهای جدید حاصل شوند در این صورت واکنش گرمای لازم را از محیط جذب می‌‌کند این تغییر انرژی را با (+ΔH) نشان می‌‌دهند. واکنشهای گرماگیر به صورت خود به خودی انجام نمی‌‌گیرند و برای انجام گرفتن واکنش نیاز به جذب انرژی یا انجام کار روی سیستم دارند.


از لحاظ ترمودینامیکی برای یک واکنش گرماگیر ΔG>0 یعنی ΔG=ΔH - TΔS در نتیجه ΔH>0 می‌باشد. در یک واکنش غیر خود به خودی ΔS<0 می‌‌باشد. بنابراین TΔS>0- چون T(-ΔS)<0 و T(-ΔS)>0- پس ΔG>0 بوده و واکنش غیر خود به خودی می‌‌باشد.

واکنش شیمیایی

چگونگی انجام یک واکنش شیمیایی

برای اینکه واکنش شیمیایی رخ دهد، باید پیوندهای بین اتمها و مولکولها شکسته شوند و به نحو دیگری تشکیل شوند. از آنجا که این پیوندها معمولا قوی هستند، اغلب برای شروع یک واکنش انرژی لازم است. این انرژی معمولا به شکل گرما است. مواد جدید (محصولات واکنش) خواص متفاوت با مواد اولیه (واکنش دهنده ها) دارند. واکنشهای شیمیایی فقط در آزمایشگاه رخ نمی‌دهند. این واکنشها دائما در اطراف ما در حال وقوع اند، مانند زنگ زدن اتومبیلها و پخته شدن غذا.


انواع واکنشهای شیمیایی

بعضی از واکنشهای شیمیایی بسیار سریع، یعنی ظرف چند ثانیه رخ می‌دهند. بعضی دیگر از واکنشها بسیار کند هستند و تا هزاران سال به طول می‌انجامند (فساد یک جسد مومیایی شده باستانی نمونه ای از واکنشهای بسیار کند است).

نحوه انجام واکنش

برای اینکه یک واکنش شیمیایی رخ دهد، باید مواد واکنش‌دهنده با هم تماس یابند تا محصولات جدیدی را تشکیل دهند. هر چیزی که تماس بین ذرات واکنش‌دهنده را افزایش دهد، سرعت واکنش را زیاد می‌کند. این کار را به چند طریق می‌توان انجام داد:


  1. با افزایش غلظت واکنش‌دهنده‌ها ، بطوری که ذرات بیشتری وجود داشته باشد. به این ترتیب ذرات به دفعات بیشتری به هم برخورد می‌کنند و بنابر این سریعتر واکنش می‌کنند و محصولات واکنش را تشکیل می‌دهند.

  2. با افزایش فشار درون ظرف واکنش ، بطوری که ذرات به هم فشرده شوند و در نتیجه بیشتر به هم برخورد کنند.

  3. با افزایش دمایی که واکنش در آن رخ می‌دهد. این کار به ذرات انرژی بیشتری می‌دهد، در نتیجه سریعتر حرکت می‌کنند و به دفعات بیشتری برخورد می‌کنند.

  4. با افزایش مساحت رویه واکنش‌دهنده‌ها با شکستن فیزیکی آنها. این کار فرصت بیشتری را برای تماس و واکنش به واکنش‌دهنده‌ها می‌دهد.

استفاده از کاتالیزور

راه دیگری برای تغییر سرعت یک واکنش استفاده از کاتالیزور است. کاتالیزور ماده ای است که سرعت یک واکنش را تغییر می‌دهد، اما خود آن در پایان واکنش از نظر شیمیایی بدون تغییر می‌ماند. کاتالیزگرها معمولا واکنش را سریعتر می‌کنند. این مواد این کار را با فراهم کردن مسیر دیگری برای واکنش انجام می‌دهند، مسیری که نیاز به انرژی کمتری دارد.

به دلیل پائین آمدن «سد» انرژی ذرات بیشتری واکنش می‌کنند و واکنش سریعتر انجام می‌شود. کاتالیزگرها در تولید صنعتی مواد مختلف، مانند بنزین ، مارگارین ، آمونیاک اهمیت زیادی دارند. اکثر کاتالیزگرهای صنعتی فلز هستند و به شکل دانه های فلزاند. بعضی از کاتالیزگرها برای کند کردن واکنشها به کار می‌روند و بازدارنده نامیده می‌شوند.

اکسایش و کاهش

اکسایش و کاهش فرایندهایی هستند که در بعضی واکنشهای شیمیایی رخ می‌دهند: وقتی که اکسیژن به ماده ای اضافه می‌شود، وقتی که ماده ای هیدروژن از دست می‌دهد و وقتی که ماده ای الکترون از دست می‌دهد.

کاهش ، عکس اکسایش است. این فرایند در سه حالت رخ می‌دهد: وقتی که ماده ای اکسیژن از دست می‌دهد، وقتی که ماده ای هیدروژن بدست می‌آورد و وقتی که مادهای الکترون بدست می آورد.

به عنوان مثال وقتی که منیزیم در هوا سوزانده می‌شود، این فلز با به دست آوردن اکسیژن و اکسیده شدن تبدیل به خاکستر می‌شود. این خاکستر اکسید منیزیم است.

واکنش های اکسایش و کاهش

اکسایش و کاهش همیشه همراه با هم در یک واکنش رخ می‌دهند.در این صورت، واکنش را واکنش اکسایش- کاهش می‌نامند. بعضی از واکنشهای اکسایش- کاهش در صنعت مفید است. مثلا استخراج آهن از سنگ معدن آن با ترکیب کردن سنگ معدن با منواکسید کربن در کوره بلند آهن انجام می‌شود. در این واکنش سنگ معدن آهن اکسیژن از دست می‌دهد و آهن تشکیل می‌شود و منواکسید کربن ، اکسیژن بدست می‌آورد و تبدیل به دی‌اکسید کربن می‌شود.

آنیون و کاتیون

نیروی پیش برنده یک واکنش یونی ، جاذبه الکتروستاتیکی متقابل یون‌های ناهمنام است. این جاذبه باعث آزاد شدن انرژی شبکه می‌شود. انرژی شبکه، عامل مهمی در تعیین تعداد بار منفی یا مثبتی است که اتم‌ها به هنگام تشکیل یک بلور یونی می‌پذیرند.

نامگذاری ترکیبات یونی

نامگذاری ترکیبات یونی بر قواعدی چند استوار است. ابتدا از کاتیون (یون مثبت) ترکیب نام برده می‌شود و آنیون (یون منفی) پس از آن ذکر می‌شود.


کاتیون

بیشتر کاتیونها ، یونهای تک اتمی‌اند که توسط فلزات بوجود می‌آیند. اگر فلز تنها یک نوع کاتیون ایجاد کند، نام یون ، همانند فلز مربوط است. +Na یون سدیم است. یعنی فلز سدیمی که ابتدا بصورت گازی در آمده است و از سدیم یک الکترون با اعمال انرژی یونش گرفته شده است. 2+Mg یون منیزیم است. 3+Al ، یون آلومینیوم است.

برخی از فلزات بیش از یک نوع کاتیون بوجود می‌آورند. در اینگونه موارد ، با نشان دادن تعداد بار کاتیونها در نامشان آنها را متمایز می‌کنیم. بار این نوع کاتیونها بصورت ارقام لاتین بعد از نام فارسی عنصر قرار داده می‌شود. +Cu ، یون مس (I) و 2+Cu ، یون مس (II) است. در روشی قدیمی‌تر برای متمایز کردن دو نوع یون بوجود آمده از یک فلز ، پسوندی به نام فلز افزوده می‌شود. در این روش ، هرگاه نماد فلزی از لاتین مشتق شده باشد، از نام لاتین فلز استفاده می‌شود.

پسوند "- و" برای یون دارای بار مثبت کمتر و پسوند "- یک" برای یون با بار مثبت بیشتر مورد استفاده قرار می‌گیرد. +Cu ، یون کوپرو و 2+Cu یون کوپریک است. +Fe ، یون فرو و 2+Fe یون فریک است.

توجه کنید که در روش بالا تعداد بارها بروشنی بیان نمی‌شود و نیز این روش برای فلزاتی که بیش از دو نوع کاتیون تولید می‌کنند، قابل استفاده نیست.

آنیون

آنیونهای تک‌اتمی از اتم فلزات به وجود می‌آیند. نام آنها از طریق حذف بخش آخر نام عنصر و افزودن پسوند "- ید" به باقیمانده به دست می‌آید. -Cl یون کلرید است. 2-O ، یون اکسید است. 3-N یون نیترید است. اما ، تمام آنیونهایی که نامشان به "ید" ختم می‌شود تک اتمی نیستند. بلکه معدودی آنیونهای چند اتمی نیز نامشان با این پسوند ختم می‌شود. مثلا -CN یون سیانید است. -OH یون هیدروکسید است. 2-O2 یون پروکسید است.

آنیونهای چند اتمی بسیاری شناخته شده‌اند. بعنوان مثال 2-O2 یون پراکسید ، Cr2O7-2 یون کرومات ، SO3-2 یون سولفیت و 3-AsO4 یون آرسنات است.

یون چند اتمی

این یون ، یونی است که از چند اتم که با یکدگیر پیوند کووالانسی دارند، بوجود می‌آید. کایتونهای چند اتمی معدودند و دو نوع نمونه متداول عبارت اند از :


  • +NH4 یون آمونیوم و 2+Hg2 یون جیوه (I) یا یون مرکورو.

  • یون 2+Hg2 یون جیوه I نامیده شده است. زیرا می‌توان آن را متشکل از دو یون +Hg (که با یکدیگر پیوند کووالانسی دارند) در نظر گرفت.

نام ترکیبات یونی

نام ترکیبات یونی ، متشکل از نام کاتیون و پس از آن ، نام آنیون (بصورت لغتی جداگانه) است.
  • Fe2O3: آهن (II) اکسید یا فریک اسید.
  • PbCO3: سرب (II) کربنات یا پلمبوکربنات.
  • NH4)2S): آمونیوم سولفید
  • Mg(NO3)2: منیزیم نیترات
  • Cu(CN)2: مس (II) سیانید یا کوپریک سیانید.